ClassBench-ng: Recasting ClassBench After a Decade of Network Evolution

Jiří Matoušek¹, Gianni Antichi², Adam Lučanský³ Andrew W. Moore², Jan Kořenek¹

¹Brno University of Technology ²University of Cambridge ³CESNET

Agenda

Motivation

Analysis of Real Rule Sets

OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation OpenFlow Rules Generation

Summary

Packet Classification

Matching header fields of incoming packets against a set of rules and performing the corresponding action.

- the basic operation of each networking device
- examples of use
 - packet forwarding
 - application of security policies
 - application-specific processing
 - application of quality-of-service guarantees
- the most common classification considers an IPv4 5-tuple
 - ip_src source IPv4 prefix
 - ip_dst destination IPv4 prefix
 - 14_src source port
 - 14_dst destination port
 - ip_proto protocol
- a lot of existing research on packet classification

Internet Evolution

- many trends that influence packet classification
 - increasing transfer rates
 - \implies faster classification
 - increasing number of classification rules
 - \implies larger data structures
 - growing deployment of IPv6
 - \implies longer IP prefixes
 - adoption of SDN with OpenFlow protocol
 - \implies more header fields
- Internet evolution stimulates development of new packet classification algorithms
- new algorithms need to be benchmarked

Packet Classification Benchmarking

- T FIT
- lack of real and publicly available benchmarking data
- benchmarking using synthetically generated rule sets

ClassBench¹

- IPv4 5-tuples
- input parameters from real rule sets
- more precise output (w.r.t. parameters)

FRuG²

- IPv4 5-tuples, OF rules
- user-defined input parameters
- more flexible in the long term
- a precise and flexible benchmarking tool must be able to perform the analysis of real rule sets

¹D. E. Taylor and J. S. Turner. ClassBench: A Packet Classification Benchmark. *Transactions on Networking*, 15(3):499–511, June 2007.

²T. Ganedegara, W. Jiang, and V. Prasanna. FRuG: A benchmark for packet forwarding in future networks. In *IPCCC*, pp. 231–238. IEEE, December 2010.

- today's Internet is no more the one of a decade ago
- questions with respect to ClassBench
 - Are the ideas behind ClassBench still valid after the decade of Internet evolution?
 - What are the characteristics of current real rule sets based on IPv4/IPv6 5-tuples and OpenFlow-specific fields?
 - What parameters should be extracted from different types of real rule sets?
 - How to extend ClassBench with respect to IPv6 and OpenFlow?

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation OpenFlow Rules Generation

Summary

T FIT

	Prefixes			
Name	or rules	Source	Date	
IPv4 prefix sets				
eqix_2015	550511	Route Views	2015-07-02	
eqix_2005	164 455		2005-07-02	
rrc00_2015	571351		2015-07-02	
rrc00_2005	168 525	RIFL RIS	2005-07-02	
IPv6 prefix sets				
eqix_2015	23 866		2015-07-02	
eqix_2013	13 444	Route Views	2013-07-02	
eqix_2005	658		2005-07-02	
rrc00_2015	24 162		2015-07-02	
rrc00_2013	14374	RIPE RIS	2013-07-02	
rrc00_2005	499		2005-07-02	
OpenFlow rule sets				
ofl	16889	OpenElow switch in a datacenter	2015-05-29	
of2	20250		2015-05-29	

- desired properties of a rule set representation
 - anonymity
 - completeness
 - scalability

IP Prefix Set Representation

- T FIT
- representation of a prefix set using a trie (binary prefix tree)
- the same trie description as in ClassBench
 - prefix length distribution
 - branching probability distributions (1-child, 2-children)
 - average skew distribution

$$skew = 1 - \frac{weight(lighter)}{weight(heavier)}$$

• prefix nesting threshold

• 3 times more prefixes after 10 years of evolution

Prefix Length Distribution

IPv4 Prefix Sets (2005-2015)

• 3 times more prefixes after 10 years of evolution

2-children Probability Distribution

FIT

• 3 times more prefixes after 10 years of evolution

Average Skew Distribution

IPv6 Prefix Sets

2005-2015

- 36 times more prefixes after 10 years of evolution
- the most common prefix length shifted from 32 (RIRs/ISPs) to 48 (end users/organizations)
 - branching probability and average skew distributions also changed significantly

2013-2015

- 2 times more prefixes after 2 years of evolution
- only minor changes in prefix length distribution
 - branching probability and average skew distributions follow similar trends

• OpenFlow 1.0 extends the IPv4 5-tuple with 7 header fields

in_port ingress port mac_src source MAC address mac_dst destination MAC address eth_type EtherType vlan_id VLAN ID vlan_prio VLAN priority ip_tos DSCP (former IP ToS)

OpenFlow Header Field Values

- T FIT
- header fields specification in rules from the of1+of2 rule set
- only 2 OF-specific fields specified in more than 20% of rules

Header Fields

OpenFlow Rule Types

OpenFlow Rule Type

Describes which header fields are wildcarded/specified in rules of this type.

- a rule type can be represented as a 12-bit binary number
 - theoretically 4096 different rule types
 - practically only 18 utilized rule types in the of1+of2 rule set

Agenda

Motivation

Analysis of Real Rule Sets IP Prefixes OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation OpenFlow Rules Generation

Summary

ClassBench Generation Accuracy

- comparison of 10 runs against original values from the acl4 seed
- 2-children Probability Distribution

ClassBench Generation Accuracy

comparison of 10 runs against original values from the acl4 seed

Average Skew Distribution

ClassBench-ng

- built upon original ClassBench
- improves IPv4 prefixes generation accuracy
- supports IPv6 prefixes generation
- supports OpenFlow analysis and generation

Improved ClassBench

- IPv4 prefixes generation is improved using a trie pruning algorithm
 - starts from 100 times bigger prefix set
 - removes individual prefixes to adjust prefix set parameters to the given values
- 3 steps of the trie pruning algorithm
 - 1 branching probabilities adjustment (\downarrow)
 - 2 average skew distribution adjustment ([†])
 - \bigcirc prefixes length distribution adjustment (\downarrow)
- steps 1 and 2 try to remove as less prefixes as possible
- each step aims to not alter the already ajusted characteristics

OpenFlow Analysis

- generates an OpenFlow seed from an OpenFlow rule set (in the ovs-ofct1 format)
- 3 parts of the OpenFlow seed
 - rule type distribution
 - 5-tuple seed (compatible with ClassBench)
 - OpenFlow-specific seed
- 4 types of representation within the OpenFlow-specific seed
 - values (in_port, eth_type)
 - parts (mac_src, mac_dst)
 - size (vlan_id)
 - null (vlan_prio, ip_tos)

OpenFlow Generation

consists of 3 steps

- uses Improved ClassBench to generate the given number of IPv4 5-tuples
- 2 removes IPv4 5-tuple fields that are not part of the given OpenFlow rule type
- 3 adds OpenFlow-specific header fields that are part of the given OpenFlow rule type
- does not allow to generate inconsistent rules (e.g., a rule specifying VLAN ID and EtherType 0x0800)

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation OpenFlow Rules Generation

Summary

ClassBench-ng Evaluation

- comparison on IPv4 prefixes generation with
 - ClassBench
 - FRuG
- comparison on IPv6 prefixes generation with
 - Non-random Generator³
- comparison on OpenFlow rules generation with
 - FRuG
- tools are compared using RMSE

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\bar{y} - y_i)^2}$$

- tool-specific seeds extracted from a common original rule set
- 10 individual runs of each tool (n = 10)
- comparison of generated values (y_i) against the target value from the seed (ȳ)

³M. Wang, S. Deering, T. Hain, and L. Dunn. Non-random Generator for IPv6 Tables. In *HOTI*. IEEE, 2004.

IPv4 Prefixes Generation

- T FIT
- the original rule set generated by ClassBench using the acl4 seed

2-children Probability Distribution

IPv4 Prefixes Generation

- T FIT
- the original rule set generated by ClassBench using the acl4 seed

Average Skew Distribution

IPv4 Prefixes Generation

- T FIT
- the original rule set generated by ClassBench using the acl4 seed

Prefix Length Distribution

- two original rule sets from the rrc00_2015 source
- not entirely fair comparison because of different inputs
 - an IPv6 prefix set for ClassBench-ng
 - an IPv4 prefix set for Non-random Generator
- prefix length distribution comparable results
- branching probability distribution ClassBench-ng is more precise
- average skew distribution Non-random Generator is more precise

OpenFlow Rules Generation

• the original rule set is of 1

OpenFlow Rule Types

FIT

OpenFlow Rules Generation

• the original rule set is of 1

OpenFlow-Specific Header Fields

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation OpenFlow Rules Generation

Summary

- the detailed analysis of real classification rule sets
 - IPv4/IPv6 prefixes from core routers
 - OpenFlow 1.0 rules from a datacenter
- ClassBench-ng tool that is able to
 - accurately generate IPv4/IPv6 5-tuples
 - analyze real OpenFlow rule sets
 - accurately generate OpenFlow rules
- ClassBench-ng page at

https://classbench-ng.github.io

- link to to the ClassBench-ng repository
- links to related tools/papers

Thank you for your attention